Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 12(2): 214-231, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38270373

RESUMO

T-cell receptor (TCR)-modified T-cell therapies have shown promise against solid tumors, but overall therapeutic benefits have been modest due in part to suboptimal T-cell persistence and activation in vivo, alongside potential tumor antigen escape. In this study, we demonstrate an approach to enhance the in vivo persistence and function of TCR T cells through combination with Amphiphile (AMP) vaccination including cognate TCR T peptides. AMP modification improves lymph node targeting of conjugated tumor immunogens and adjuvants, thereby coordinating a robust T cell-activating endogenous immune response. AMP vaccine combination with TCR T-cell therapy led to complete eradication and durable responses against established murine solid tumors refractory to TCR T-cell monotherapy. Enhanced antitumor efficacy was correlated with simultaneous in vivo invigoration of adoptively transferred TCR T cells and in situ expansion of the endogenous antitumor T-cell repertoire. Long-term protection against tumor recurrence in AMP-vaccinated mice was associated with antigen spreading to additional tumor-associated antigens not targeted by vaccination. AMP vaccination further correlated with pro-inflammatory lymph node transcriptional reprogramming and increased antigen presenting-cell maturation, resulting in TCR T-cell expansion and functional enhancement in lymph nodes and solid tumor parenchyma without lymphodepletion. In vitro evaluation of AMP peptides with matched human TCR T cells targeting NY-ESO-1, mutant KRAS, and HPV16 E7 illustrated the clinical potential of AMP vaccination to enhance human TCR T-cell proliferation, activation, and antitumor activity. Taken together, these studies provide rationale and evidence to support clinical evaluation of combining AMP vaccination with TCR T-cell therapies to augment antitumor activity.


Assuntos
Neoplasias , Vacinas , Camundongos , Humanos , Animais , Receptores de Antígenos de Linfócitos T/genética , Antígenos de Neoplasias , Linfonodos , Peptídeos , Terapia Baseada em Transplante de Células e Tecidos
2.
Nat Med ; 30(2): 531-542, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38195752

RESUMO

Pancreatic and colorectal cancers are often KRAS mutated and are incurable when tumor DNA or protein persists or recurs after curative intent therapy. Cancer vaccine ELI-002 2P enhances lymph node delivery and immune response using amphiphile (Amph) modification of G12D and G12R mutant KRAS (mKRAS) peptides (Amph-Peptides-2P) together with CpG oligonucleotide adjuvant (Amph-CpG-7909). We treated 25 patients (20 pancreatic and five colorectal) who were positive for minimal residual mKRAS disease (ctDNA and/or serum tumor antigen) after locoregional treatment in a phase 1 study of fixed-dose Amph-Peptides-2P and ascending-dose Amph-CpG-7909; study enrollment is complete with patient follow-up ongoing. Primary endpoints included safety and recommended phase 2 dose (RP2D). The secondary endpoint was tumor biomarker response (longitudinal ctDNA or tumor antigen), with exploratory endpoints including immunogenicity and relapse-free survival (RFS). No dose-limiting toxicities were observed, and the RP2D was 10.0 mg of Amph-CpG-7909. Direct ex vivo mKRAS-specific T cell responses were observed in 21 of 25 patients (84%; 59% both CD4+ and CD8+); tumor biomarker responses were observed in 21 of 25 patients (84%); biomarker clearance was observed in six of 25 patients (24%; three pancreatic and three colorectal); and the median RFS was 16.33 months. Efficacy correlated with T cell responses above or below the median fold increase over baseline (12.75-fold): median tumor biomarker reduction was -76.0% versus -10.2% (P < 0.0014), and the median RFS was not reached versus 4.01 months (hazard ratio = 0.14; P = 0.0167). ELI-002 2P was safe and induced considerable T cell responses in patients with immunotherapy-recalcitrant KRAS-mutated tumors. ClinicalTrials.gov identifier: NCT04853017 .


Assuntos
Neoplasias Colorretais , Vacinas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Recidiva Local de Neoplasia/patologia , Biomarcadores Tumorais/genética , Vacinas/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Peptídeos , Antígenos de Neoplasias/uso terapêutico
3.
Nat Commun ; 14(1): 4371, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553346

RESUMO

The recent emergence of a causal link between Epstein-Barr virus (EBV) and multiple sclerosis has generated considerable interest in the development of an effective vaccine against EBV. Here we describe a vaccine formulation based on a lymph node targeting Amphiphile vaccine adjuvant, Amphiphile-CpG, admixed with EBV gp350 glycoprotein and an engineered EBV polyepitope protein that includes 20 CD8+ T cell epitopes from EBV latent and lytic antigens. Potent gp350-specific IgG responses are induced in mice with titers >100,000 in Amphiphile-CpG vaccinated mice. Immunization including Amphiphile-CpG also induces high frequencies of polyfunctional gp350-specific CD4+ T cells and EBV-specific CD8+ T cells that are 2-fold greater than soluble CpG and are maintained for >7 months post immunization. This combination of broad humoral and cellular immunity against multiple viral determinants is likely to provide better protection against primary infection and control of latently infected B cells leading to protection against the development of EBV-associated diseases.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Camundongos , Animais , Infecções por Vírus Epstein-Barr/prevenção & controle , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Linfonodos , Vacinas de Subunidades Antigênicas
4.
NPJ Vaccines ; 7(1): 128, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307453

RESUMO

Despite the success of currently authorized vaccines for the reduction of severe COVID-19 disease risk, rapidly emerging viral variants continue to drive pandemic waves of infection, resulting in numerous global public health challenges. Progress will depend on future advances in prophylactic vaccine activity, including advancement of candidates capable of generating more potent induction of cross-reactive T cells and durable cross-reactive antibody responses. Here we evaluated an Amphiphile (AMP) adjuvant, AMP-CpG, admixed with SARS-CoV-2 Spike receptor binding domain (RBD) immunogen, as a lymph node-targeted protein subunit vaccine (ELI-005) in mice and non-human primates (NHPs). AMP-mediated targeting of CpG DNA to draining lymph nodes resulted in comprehensive local immune activation characterized by extensive transcriptional reprogramming, inflammatory proteomic milieu, and activation of innate immune cells as key orchestrators of antigen-directed adaptive immunity. Prime-boost immunization with AMP-CpG in mice induced potent and durable T cell responses in multiple anatomical sites critical for prophylactic efficacy and prevention of severe disease. Long-lived memory responses were rapidly expanded upon re-exposure to antigen. In parallel, RBD-specific antibodies were long-lived, and exhibited cross-reactive recognition of variant RBD. AMP-CpG-adjuvanted prime-boost immunization in NHPs was safe and well tolerated, while promoting multi-cytokine-producing circulating T cell responses cross-reactive across variants of concern (VOC). Expansion of RBD-specific germinal center (GC) B cells in lymph nodes correlated to rapid seroconversion with variant-specific neutralizing antibody responses exceeding those measured in convalescent human plasma. These results demonstrate the promise of lymph-node adjuvant-targeting to coordinate innate immunity and generate robust adaptive responses critical for vaccine efficacy.

5.
Sci Adv ; 7(6)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33547083

RESUMO

The profound consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mandate urgent development of effective vaccines. Here, we evaluated an Amphiphile (AMP) vaccine adjuvant, AMP-CpG, composed of diacyl lipid-modified CpG, admixed with the SARS-CoV-2 Spike-2 receptor binding domain protein as a candidate vaccine (ELI-005) in mice. AMP modification efficiently delivers CpG to lymph nodes, where innate and adaptive immune responses are generated. Compared to alum, immunization with AMP-CpG induced >25-fold higher antigen-specific T cells that produced multiple T helper 1 (TH1) cytokines and trafficked into lung parenchyma. Antibody responses favored TH1 isotypes (IgG2c and IgG3) and potently neutralized Spike-2-ACE2 receptor binding, with titers 265-fold higher than natural convalescent patient COVID-19 responses; T cell and antibody responses were maintained despite 10-fold dose reduction in Spike antigen. Both cellular and humoral immune responses were preserved in aged mice. These advantages merit clinical translation to SARS-CoV-2 and other protein subunit vaccines.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Imunidade Celular , Imunidade Humoral , Linfonodos/imunologia , SARS-CoV-2/imunologia , Tensoativos/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Feminino , Células HEK293 , Humanos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Neutralização , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Domínios e Motivos de Interação entre Proteínas/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Resultado do Tratamento , Vacinação/métodos , Vacinas de Subunidades Antigênicas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...